

PAPER SOLUTION

From Meerut

JEE
MAIN
2026

JAN	SHIFT
23	1 st

Aryan Agarwal

Founder and CEO

CVPS INTEGRATED STAR COURSE

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. A rectangle is formed by lines $x = 0, y = 0, x = 3, y = 4$. A line perpendicular to $3x + 4y + 6 = 0$ divides the rectangle into two equal parts, then the distance of the line from $(-1, \frac{3}{2})$ is

- A** 2
- B** $17/10$
- C** $6/5$
- D** $8/5$

(Ans : B)

JEE MAIN 2026 LIVE PAPER DISCUSSION

#Q. Let $A = \{-2, -1, 0, 1, 2, 3, 4\}$ and R be a relation R , such that $R = \{(x, y) : (2x + y) \leq -2, x \in A, y \in A\}$.

Let l = number of elements in R

m = minimum number of elements to be added in R to make it reflexive.

n = minimum number of elements to be added in R to make it symmetric,
then $(l + m + n)$ is

A 10

B 17

C 11

D 14

(Ans : B)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. Number of 4 letters words with or without meaning formed from the letters of the word PQRSSSTTUVV?

- A** 1232
- B** 1400
- C** 1422
- D** 1162

(Ans : C)

JEE MAIN 2026 PAPER DISCUSSION

#Q. The value of $\frac{\binom{100}{50}}{51} + \frac{\binom{100}{51}}{52} + \dots + \frac{\binom{100}{100}}{101}$ is

- A** $\frac{2^{100}}{100}$
- B** $\frac{2^{101}}{101}$
- C** $\frac{2^{100}}{101}$
- D** $\frac{2^{101}}{100}$

(Ans : C)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. The number of solutions of $13\cos 2\theta + 8\cos\theta - 3\sqrt{3} = 0$ if $\theta \in [-3\pi, 2\pi]$ is

- A** 5
- B** 0
- C** 3
- D** 4

(Ans : A)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. For given vectors $\vec{a} = -\hat{i} + \hat{j} + 2\hat{k}$ and $\vec{b} = 2\hat{i} - \hat{j} + \hat{k}$ where $\vec{c} = \vec{a} \times \vec{b}$ and $\vec{d} = \vec{c} \times \vec{b}$. Then the value of $(\vec{a} - \vec{b}) \cdot \vec{d}$ is

- A** -35
- B** 53
- C** -52
- D** 25

(Ans : A)

JEE MAIN 2026 PAPER DISCUSSION

#Q. Find $\int_{\frac{\pi}{24}}^{\frac{5\pi}{24}} \frac{dx}{1+(\tan 2x)^{1/3}}$

- A** $\frac{\pi}{24}$
- B** $\frac{\pi}{12}$
- C** $\frac{\pi}{6}$
- D** $\frac{\pi}{48}$

(Ans : B)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. The line $y = x + 1$ intersects the ellipse $\frac{x^2}{2} + \frac{y^2}{1} = 1$ at A and B. Find the angle subtended by segment AB and centre of ellipse is

- A** $\frac{\pi}{2} + \tan^{-1} \left(\frac{1}{4} \right)$
- B** $\frac{\pi}{2} - \tan^{-1} \left(\frac{1}{4} \right)$
- C** $\frac{\pi}{2} + 2\tan^{-1} \left(\frac{1}{4} \right)$
- D** $\frac{\pi}{4} + \tan^{-1} \left(\frac{1}{4} \right)$

(Ans : A)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. The area (in square units) bounded by the curve $f(x) = \text{Max} \{ \sin x, \cos x \}$ x-axis between $x = 0$ and $x = \frac{3\pi}{2}$ is Then, the value of $A + A^2$ is

(Ans : 12)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. If coefficients of x, x^2 and x^3 are in arithmetic progression of the binomial expansion of $(1 + x^2)^2 (1 + x)^n, n \in N$. Then sum of all values of n is

- A** 7
- B** 9
- C** 8
- D** 10

(Ans : B)

JEE MAIN 2026 PAPER DISCUSSION

#Q. The mean and variance of the 8 observations $-10, -7, -1, x, y, 16, 2, 9$ are $\frac{7}{2}$ and $\frac{293}{4}$ respectively. Then, the mean of $x, y, x + y + 1, |x - y|$ is

(Ans : 11)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. Let $f(x) = \int \frac{e^x(2-x^2)}{\sqrt{1+x}(1-x)^{\frac{3}{2}}} dx$, with $f(0) = 0$, then $f\left(\frac{1}{2}\right)$ is

- A** $\sqrt{2e} + 1$
- B** $\sqrt{2e} - 1$
- C** $\sqrt{3e} + 1$
- D** $\sqrt{3e} - 1$

(Ans : D)

JEE MAIN 2026 PAPER DISCUSSION

#Q. If A is matrix of order 3 and $x = |3\text{adj}(A^2) \cdot \text{adj}(2A)|$ and $|A| = 6$ and $x = 2^n \cdot 3^m$, then $m + n$ is

- A** 21
- B** 25
- C** 27
- D** 19

(Ans : A)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. Let the domain of $f(x) = \log_3 \left(\log_5 \left(\log_7 (9x - x^2 - 13) \right) \right)$ is (m, n) . Let $\frac{n}{3}$ and $\frac{3m}{8}$ be eccentricity and length of latus rectum of hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ respectively, then the value of $\left(\frac{a+b^2}{a-b^2} \right)$ is equal to

- A** 7
- B** 9
- C** 3
- D** 13

(Ans : A)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. If point B and C lies on line $\frac{x}{1} = \frac{1-y}{-2} = \frac{z-2}{3}$ and point A is $(1,6,3)$. If $BC = 10$. Then, the area of $\triangle ABC$ is

- A** $2\sqrt{13}$
- B** $5\sqrt{13}$
- C** $6\sqrt{13}$
- D** $4\sqrt{13}$

(Ans : B)

JEE MAIN 2026 LIVE PAPER DISCUSSION

#Q. $3 \leq |2z - (3 + 3i)| \leq 7$. Then find minimum value of $\left|z + \frac{1}{2}(5 + 3i)\right|$.

- A** $3/2$
- B** $7/2$
- C** 0
- D** 5

(Ans : A)

JEE MAIN 2026 PAPER DISCUSSION

#Q. $x^4 dy + (4x^3 y + 2\sin x)dx = 0, y\left(\frac{\pi}{2}\right) = 0$. Find $y\left(\frac{\pi}{3}\right) \times \pi^4$.

- A** 79
- B** 81
- C** 80
- D** 18

(Ans : B)